Forem

# rag

Retrieval augmented generation, or RAG, is an architectural approach that can improve the efficacy of large language model (LLM) applications by leveraging custom data.

Posts

👋 Sign in for the ability to sort posts by relevant, latest, or top.
Build Code-RAGent, an agent for your codebase
Cover image for Build Code-RAGent, an agent for your codebase

Build Code-RAGent, an agent for your codebase

6
Comments
5 min read
A Developer’s Guide to Retrieval Augmented Generation (RAG) — How It Actually Works
Cover image for A Developer’s Guide to Retrieval Augmented Generation (RAG) — How It Actually Works

A Developer’s Guide to Retrieval Augmented Generation (RAG) — How It Actually Works

1
Comments
3 min read
Building an E-Commerce Support Chatbot: Part 2 - Building the Knowledge Base
Cover image for Building an E-Commerce Support Chatbot: Part 2 - Building the Knowledge Base

Building an E-Commerce Support Chatbot: Part 2 - Building the Knowledge Base

Comments
2 min read
Configuring your own deep research tool (Using Nix Flakes)

Configuring your own deep research tool (Using Nix Flakes)

Comments
4 min read
Building a Prompt-Based Crypto Trading Platform with RAG and Reddit Sentiment Analysis using Haystack

Building a Prompt-Based Crypto Trading Platform with RAG and Reddit Sentiment Analysis using Haystack

Comments
4 min read
How to train LLM faster

How to train LLM faster

4
Comments
3 min read
An overview of rules based ingestion in DataBridge

An overview of rules based ingestion in DataBridge

1
Comments
6 min read
Integrating LlamaIndex and DeepSeek-R1 for reasoning_content and Function Call Features
Cover image for Integrating LlamaIndex and DeepSeek-R1 for reasoning_content and Function Call Features

Integrating LlamaIndex and DeepSeek-R1 for reasoning_content and Function Call Features

Comments
10 min read
AutoRAGLearnings: Hands-On RAG Pipeline Tuning with Greedy Search

AutoRAGLearnings: Hands-On RAG Pipeline Tuning with Greedy Search

1
Comments 1
1 min read
Part 1: The Memento Problem with AI Memory
Cover image for Part 1: The Memento Problem with AI Memory

Part 1: The Memento Problem with AI Memory

6
Comments 1
2 min read
What the Heck Are Hybrid Knowledge Bases? (And Why They Matter for LLM Apps)
Cover image for What the Heck Are Hybrid Knowledge Bases? (And Why They Matter for LLM Apps)

What the Heck Are Hybrid Knowledge Bases? (And Why They Matter for LLM Apps)

2
Comments
2 min read
Implementing Simple RAG in local environment /w .NET (C#).

Implementing Simple RAG in local environment /w .NET (C#).

2
Comments 1
5 min read
Document Loading, Parsing, and Cleaning in AI Applications

Document Loading, Parsing, and Cleaning in AI Applications

1
Comments
16 min read
AI’s Hidden Superpower: Why Retrieval-Augmented Generation (RAG) is Game-Changing

AI’s Hidden Superpower: Why Retrieval-Augmented Generation (RAG) is Game-Changing

Comments
3 min read
Implement an end-to-end RAG solution with watsonx.ai and Elasticsearch SQL
Cover image for Implement an end-to-end RAG solution with watsonx.ai and Elasticsearch SQL

Implement an end-to-end RAG solution with watsonx.ai and Elasticsearch SQL

Comments
2 min read
Build a knowledge graph from documents using Docling

Build a knowledge graph from documents using Docling

Comments
4 min read
Spring Boot AI Evaluation Testing
Cover image for Spring Boot AI Evaluation Testing

Spring Boot AI Evaluation Testing

5
Comments
12 min read
Picture annotation with Docling

Picture annotation with Docling

3
Comments
7 min read
AppealRX is a fine-tuned BERT model trained on 7000+ appeals notes
Cover image for AppealRX is a fine-tuned BERT model trained on 7000+ appeals notes

AppealRX is a fine-tuned BERT model trained on 7000+ appeals notes

Comments
3 min read
RAG for a beginner by ChatGPT

RAG for a beginner by ChatGPT

1
Comments
4 min read
From LLM to AI Agent: What’s the Real Journey Behind AI System Development?
Cover image for From LLM to AI Agent: What’s the Real Journey Behind AI System Development?

From LLM to AI Agent: What’s the Real Journey Behind AI System Development?

Comments
4 min read
Build Intelligent ChatBots with Language Processing
Cover image for Build Intelligent ChatBots with Language Processing

Build Intelligent ChatBots with Language Processing

Comments
6 min read
From Plain English to Grafana: How VizGenie Simplifies PromQL
Cover image for From Plain English to Grafana: How VizGenie Simplifies PromQL

From Plain English to Grafana: How VizGenie Simplifies PromQL

1
Comments
3 min read
What-If Story Generator: Building a Narrative Assistant with RAG
Cover image for What-If Story Generator: Building a Narrative Assistant with RAG

What-If Story Generator: Building a Narrative Assistant with RAG

2
Comments
4 min read
Supercharging My VS Code AI Agent with Local RAG
Cover image for Supercharging My VS Code AI Agent with Local RAG

Supercharging My VS Code AI Agent with Local RAG

13
Comments 3
5 min read
loading...