DEV Community

Priscilla Parodi for Elastic

Posted on • Edited on

1 1

Trained Models for Supervised Learning

| Menu | Next Post: Inference for Supervised Learning |

When you use a data frame analytics job to perform classification or regression analysis, it creates a machine learning model that is trained and tested against a labelled data set. When you are satisfied with your trained model, you can use it to make predictions against new data.

To see your available models: Kibana>Machine Learning>Data Frame Analytics>Models

Alternatively, you can use APIs like get trained models.

The following example gets information for all the trained models:

GET _ml/trained_models/

Models trained in Elasticsearch are portable and can be transferred between clusters.

It is also possible to import a model to your Elasticsearch cluster even if the model is not trained by Elastic Data Frame analytics. Eland supports importing models directly through its APIs.

| Menu | Next Post: Inference for Supervised Learning |

This post is part of a series that covers Artificial Intelligence with a focus on Elastic's (Creators of Elasticsearch) Machine Learning solution, aiming to introduce and exemplify the possibilities and options available, in addition to addressing the context and usability.

Image of Quadratic

Free AI chart generator

Upload data, describe your vision, and get Python-powered, AI-generated charts instantly.

Try Quadratic free

Top comments (0)

Image of Datadog

Get the real story behind DevSecOps

Explore data from thousands of apps to uncover how container image size, deployment frequency, and runtime context affect real-world security. Discover seven key insights that can help you build and ship more secure software.

Read the Report

👋 Kindness is contagious

Engage with a wealth of insights in this thoughtful article, valued within the supportive DEV Community. Coders of every background are welcome to join in and add to our collective wisdom.

A sincere "thank you" often brightens someone’s day. Share your gratitude in the comments below!

On DEV, the act of sharing knowledge eases our journey and fortifies our community ties. Found value in this? A quick thank you to the author can make a significant impact.

Okay